信号完整性:从PCB走线、信号反射到特性阻抗等
首先按看一下对信号发射端的影响。当一个快速上升的阶跃信号到达电容时,电容快速充电,充电电流和信号电压上升快慢有关,充电电流公式为:I=C*dV/dt。电容量越大,充电电流越大,信号上升时间越快,dt越小,同样使充电电流越大。
1、PCB走线中途容性负载使发射端信号产生下冲,接收端信号也会产生下冲。
2、能容忍的电容量和信号上升时间有关,信号上升时间越快,能容忍的电容量越小。
信号完整性(二):接收端容性负载的反射
随着电容的充电,电压变化率逐渐减小(电路原理中的瞬态过程),电容的充电电流也不断减小。即电容的充电电流是随时间变化的。
电容的阻抗为:
至于信号上升时间增加的精确值是多少,对于电路设计来说没必要,只要定性的分析,有个大致的估算就可以了。因为计算再精确也没实际意义,电路板的参数也不精 确!对于设计者来说,定性分析并了解影响,大致估算出影响在那个量级,能给电路设计提供指导就可以了,其他的事软件来做吧。举个例子,如果信号上升时间 1ns,电容使信号上升时间增加远小于1ns,比如0.2 ns,那么这么一点点增加可能不会有什么影响。如果电容造成的上升时间增加很多,那可能就会对电路时序产生影响。那么多少算很多?看看电路的时序余量吧, 这涉及到电路的时序分析和时序设计。
总之接收端电容负载的影响有两点:
1、使源端(驱动端)信号产生局部电压凹陷。
2、接收端信号上升时间延长。
在电路设计中这两点都要考虑。
信号完整性(三):PCB走线宽度变化产生的反射
在进行PCB布线时,经常会发生这样的情况:走线通过某一区域时,由于该区域布线空间有限,不得不使用更细的线条,通过这一区域后,线条再恢复原来 的宽度。走线宽度变化会引起阻抗变化,因此发生反射,对信号产生影响。那么什么情况下可以忽略这一影响,又在什么情况下我们必须考虑它的影响?
有三个因素和这一影响有关:阻抗变化的大小、信号上升时间、窄线条上信号的时延。
首先讨论阻抗变化的大小。很多电路的设计要求反射噪声小于电压摆幅的5%(这和信号上的噪声预算有关),根据反射系数公式:
以计算出阻抗大致的变化率要求为:
你可能知道,电路板上阻抗的典型指标为+/-10%,根本原因就在这。
如 果阻抗变化只发生一次,例如线宽从8mil变到6mil后,一直保持6mil宽度这种情况,要达到突变处信号反射噪声不超过电压摆幅的5%这一噪声预算要 求,阻抗变化必须小于10%。这有时很难做到,以 FR4板材上微带线的情况为例,我们计算一下。如果线宽8mil,线条和参考平面之间的厚度为4mil,特性阻抗为46.5欧姆。线宽变化到6mil后特 性阻抗变成54.2欧姆,阻抗变化率达到了20%。反射信号的幅度必然超标。至于对信号造成多大影响,还和信号上升时间和驱动端到反射点处信号的时延有 关。但至少这是一个潜在的问题点。幸运的是这时可以通过阻抗匹配端接解决问题。
如果阻抗变化发生两次,例如线宽从8mil变到6mil 后,拉出2cm后又变回8mil。那么在2cm长6mil宽线条的两个端点处都会发生反射,一次是阻抗变大,发生正反射,接着阻抗变小,发生负反射。如果 两次反射间隔时间足够短,两次反射就有可能相互抵消,从而减小影响。假设传输信号为1V,第一次正反射有0.2V被反射,1.2V继续向前传输,第二次反 射有 -0.2*1.2 = 0.24v被反射回。再假设6mil线长度极短,两次反射几乎同时发生,那么总的反射电压只有0.04V,小于5%这一噪声预算要求。因此,这种反射是否 影响信号,有多大影响,和阻抗变化处的时延以及信号上升时间有关。研究及实验表明,只要阻抗变化处的时延小于信号上升时间的20%,反射信号就不会造成问 题。如果信号上升时间为1ns,那么阻抗变化处的时延小于0.2ns对应1.2英寸,反射就不会产生问题。也就是说,对于本例情况,6mil宽走线的长度 只要小于3cm就不会有问题。
当PCB走线线宽发生变化时,要根据实际情况仔细分析,是否造成影响。需要关注的参数由三个:阻抗变化有多大、信号上升时间是多少、线宽变化的颈状部分有多长。根据上面的方法大致估算一下,适当留出一定的余量。如果可能的话,尽量让减小颈状部分长度。
需要指出的是,实际的PCB加工中,参数不可能像理论中那样精确,理论能对我们的设计提供指导,但不能照搬照抄,不能教条,毕竟这是一门实践的科学。估算出的值要根据实际情况做适当的修订,再应用到设计中。如果感觉经验不足,那就先保守点,然后在根据制造成本适当调整。
信号完整性(四):信号振铃是怎么产生的
那么信号振铃是怎么产生的呢?
前 面讲过,如果信号传输过程中感受到阻抗的变化,就会发生信号的反射。这个信号可能是驱动端发出的信号,也可能是远端反射回来的反射信号。根据反射系数的公 式,当信号感受到阻抗变小,就会发生负反射,反射的负电压会使信号产生下冲。信号在驱动端和远端负载之间多次反射,其结果就是信号振铃。大多数芯片的输出 阻抗都很低,如果输出阻抗小于PCB走线的特性阻抗,那么在没有源端端接的情况下,必然产生信号振铃。
信号振铃的过程可以用反弹图来直观 的解释。假设驱动端的输出阻抗是10欧姆,PCB走线的特性阻抗为50欧姆(可以通过改变PCB走线宽度,PCB走线和内层参考平面间介质厚度来调整), 为了分析方便,假设远端开路,即远端阻抗无穷大。驱动端传输3.3V电压信号。我们跟着信号在这条传输线中跑一次,看看到底发生了什么?为分析方便,忽略 传输线寄生电容和寄生电感的影响,只考虑阻性负载。图2为反射示意图。
第1次反射:信号从芯片内部发出,经过10欧姆输出阻抗和50欧姆 PCB特性阻抗的分压,实际加到PCB走线上的信号为A点电压3.3*50/(10+50)=2.75V。传输到远端B点,由于B点开路,阻抗无穷大,反 射系数为1,即信号全部反射,反射信号也是2.75V。此时B点测量电压是2.75+2.75=5.5V。
第2次反射:2.75V反射电压回到A点,阻抗由50欧姆变为10欧姆,发生负反射,A点反射电压为-1.83V,该电压到达B点,再次发生反射,反射电压-1.83V。此时B点测量电压为5.5-1.83-1.83=1.84V。
第3次反射:从B点反射回的-1.83V电压到达A点,再次发生负反射,反射电压为1.22V。该电压到达B点再次发生正反射,反射电压1.22V。此时B点测量电压为1.84+1.22+1.22=4.28V。
第4次反射:。。。 。。。 。。。第5次反射:。。。 。。。 。。。
如此循环,反射电压在A点和B点之间来回反弹,而引起B点电压不稳定。观察B点电压:5.5V->1.84V->4.28V->……,可见B点电压会有上下波动,这就是信号振铃。
信号振铃根本原因是负反射引起的,其罪魁祸首仍然是阻抗变化,又是阻抗!在研究信号完整性问题时,一定时时注意阻抗问题。
。此时反射点电压为3.3V+(-0.825V)=2.475V。
开路:
开路相当于阻抗无穷大,反射系数按公式计算为1。即反射电压3.3V。反射点处电压为6.6V。可见,在这种极端情况下,反射点处电压翻倍了。
短路:
短路时阻抗为0,电压一定为0。按公式计算反射系数为-1,说明反射电压为-3.3V,因此反射点电压为0。
计算非常简单,重要的是必须知道,由于反射现象的存在,信号传播路径中阻抗发生变化的点,其电压不再是原来传输的电压。这种反射电压会改变信号的波形,从而可能会引起信号完整性问题。这种感性的认识对研究信号完整性及设计电路板非常重要,必须在头脑中建立起这个概念。
信号完整性(六):多长的走线才是传输线
多长的走线才是传输线?
这和信号的传播速度有关,在FR4板材上铜线条中信号速度为6in/ns。简单的说,只要信号在走线上的往返时间大于信号的上升时间,PCB上的走线就应当做传输线来处理。
我们看信号在一段长走线上传播时会发生什么情况。假设有一段60英寸长的PCB走线,如图1所示,返回路径是PCB板内层靠近信号线的地平面,信号线和地平面间在远端开路。
信 号在这条走线上向前传播,传输到走线尽头需要10ns,返回到源端又需要10ns,则总的往返时间是20ns。如果把上面的信号往返路径看成普通的电流回 路的话,返回路径上应该没有电流,因为在远端是开路的。但实际情况却不是这样,返回路径在信号上后最初的一段时间有电流。
在这段走线上加一个上升时间为1ns的信号,在最初的1ns时间,信号还线条上只走了6英寸,不知道远端是开路还是短路,那么信号感觉到的阻抗有多大,怎么确定?如果把信号往返路径看成普通的电流回路的话就会产生矛盾,所以,必须按传输线处理。
实 际上,在信号线条和返回地平面间存在寄生电容,如图2所示。当信号向前传播过程中,A点处电压不断不变化,对于寄生电容来说,变化的电压意味着产生电流, 方向如图中虚线所示。因此信号感受到的阻抗就是电容呈现出来的阻抗,寄生电容构成了电流回流的路径。信号在向前传播所经过的每一点都会感受到一个阻抗,这 个阻抗是变化的电压施加到寄生电容上产生的,通常叫做传输线的瞬态阻抗。
图2
当信号到达远端,远端的电压升至信号的最终电压后,电压不再变化。虽然寄生电容还是存在,但是没有电压的变化,电容相当于开路,这对应的就是直流情况。
因此,这个信号路径短期的表现和长期的表现不一样,在起始一小段时间内,表现就是传输线。即使传输线远端开路,在信号跳变期间,传输线前段的性能也会像一个阻值有限的电阻。
信号完整性(七):特性阻抗
一个很重要的特性阻抗就是自由空间的特性阻抗,也叫自由空间的波阻抗,在EMC中非常重要。自由空间特性阻抗为
对于常见的FR4板材的PCB板上, 特性阻抗的典型结构如图所示。对于微带线,线宽W是介质厚度h的2倍。对于带状线,线条两侧介质总厚度b是线宽W的两倍。
了解这些特殊的特性阻抗,对于设计电路板有一定的参考意义,能让我们在制作电路前有个直觉的认识。